:: ECONOMY :: ANALYSIS AND RESEARCH OF THE CAPABILITIES OF EXISTING SYSTEMS FOR WORKING OUT DESIGN AND TECHNOLOGICAL SOLUTIONS OF ELECTRIC PROPULSION ENGINES :: ECONOMY :: ANALYSIS AND RESEARCH OF THE CAPABILITIES OF EXISTING SYSTEMS FOR WORKING OUT DESIGN AND TECHNOLOGICAL SOLUTIONS OF ELECTRIC PROPULSION ENGINES
:: ECONOMY :: ANALYSIS AND RESEARCH OF THE CAPABILITIES OF EXISTING SYSTEMS FOR WORKING OUT DESIGN AND TECHNOLOGICAL SOLUTIONS OF ELECTRIC PROPULSION ENGINES
 
UA  PL  EN
         

Світ наукових досліджень. Випуск 45

Термін подання матеріалів

21 жовтня 2025

До початку конференції залишилось днів 21



  Головна
Нові вимоги до публікацій результатів кандидатських та докторських дисертацій
Редакційна колегія. ГО «Наукова спільнота»
Договір про співробітництво з Wyzsza Szkola Zarzadzania i Administracji w Opolu
Календар конференцій
Архів
  Наукові конференції
 
 Лінки
 Форум
Наукові конференції
Наукова спільнота - інтернет конференції
Світ наукових досліджень www.economy-confer.com.ua

 Голосування 
З яких джерел Ви дізнались про нашу конференцію:

соціальні мережі;
інформування електронною поштою;
пошукові інтернет-системи (Google, Yahoo, Meta, Yandex);
інтернет-каталоги конференцій (science-community.org, konferencii.ru, vsenauki.ru, інші);
наукові підрозділи ВУЗів;
порекомендували знайомі.
з СМС повідомлення на мобільний телефон.


Результати голосувань Докладніше

 Наша кнопка
www.economy-confer.com.ua - Економічні наукові інтернет-конференції

 Лічильники
Українська рейтингова система

ANALYSIS AND RESEARCH OF THE CAPABILITIES OF EXISTING SYSTEMS FOR WORKING OUT DESIGN AND TECHNOLOGICAL SOLUTIONS OF ELECTRIC PROPULSION ENGINES

 
23.09.2025 20:09
Автор: Чорна Вікторія Миколаївна, аспірант, Дніпропетровського національного університету ім. Олеся Гончара, Авіаційна та ракетно–космічна техніка; Карпович Олена Володимирівна, кандидат технічних наук, доцент, Дніпропетровського національного університету ім. Олеся Гончара
[26. Технічні науки;]

Abstract. 

The paper analyzes the current state and capabilities of existing systems for the development and testing of design and technological solutions in electric propulsion engines (EPEs). The study highlights the principles of modern approaches to computer modeling, material selection, and experimental validation. The analysis demonstrates that while significant progress has been achieved, the integration of these systems into a unified framework remains an open challenge. The research identifies gaps in predictive modeling, experimental techniques, and quality assurance methods, and suggests directions for further development of integrated systems for ensuring reliability and efficiency in EPEs.

Keywords: electric propulsion engines, design solutions, technological processes, system analysis, reliability, digital modeling.

Introduction

Electric propulsion engines (EPEs) are increasingly used in modern spacecraft due to their high efficiency and the ability to provide long-duration thrust for orbital maneuvers [1, p. 15]. However, the process of developing and validating design and technological solutions for EPEs remains complex and resource-intensive. Existing systems of working out design and technological decisions include a combination of theoretical modeling, material testing, and full-scale experimental validation [2, p. 8].

The purpose of this paper is to analyze existing approaches to the development of design and technological solutions for EPEs, to identify their limitations, and to outline possible pathways for their integration into comprehensive systems.

1. Theoretical foundations of design and technological solutions in EPEs

The development of EPEs is based on a complex interplay of physics, materials science, and advanced manufacturing methods. Core challenges include:

- Plasma-material interaction leading to erosion of critical components [3, p. 27].

- Optimization of geometry for plasma confinement and acceleration.

- Material selection for electrodes, dielectric channels, and magnetic systems [4, p. 112].

- Manufacturing tolerances which critically influence the performance and lifetime of EPEs.

Existing systems of theoretical validation focus on mathematical modeling of plasma flows and erosion, often using computational fluid dynamics (CFD) and particle-in-cell (PIC) methods [5, p. 43]. However, such models still lack sufficient predictive accuracy without experimental calibration.

2. Existing systems for working out design and technological solutions

Currently, the validation of design and technological solutions in EPEs involves several interconnected systems:

2.1. Computer-aided design and simulation systems.

Widely used software allows modeling of plasma dynamics, thermal loads, and electromagnetic fields. Nevertheless, current tools have limited ability to fully reproduce the complexity of plasma-wall interactions [6, p. 75].

2.2 Material testing systems.

Laboratory-based facilities evaluate resistance to erosion, high-temperature stability, and compatibility with plasma flows [7, p. 52]. Such experiments provide essential data but are costly and time-consuming.

2.3. Experimental and test-bench facilities.

Ground-based test chambers simulate near-space conditions, enabling verification of thrust parameters, efficiency, and lifetime. However, discrepancies between laboratory and in-orbit conditions remain significant [8, p. 31].

2.4. Quality control and production assurance systems.

Methods of additive manufacturing and high-precision machining are increasingly integrated into EPE production. Control systems ensure compliance with design specifications, but integration with predictive modeling is still insufficient [9, p. 17].

3. Analysis of capabilities and limitations

The analysis shows that existing systems provide valuable insights but remain fragmented. Key limitations include:

- Lack of integration between digital models and physical experiments.

- Insufficient accuracy in long-term lifetime prediction [10, p. 204].

- High costs and limited availability of large-scale experimental facilities.

- Weak connection between production quality assurance and early-stage design validation.

As a result, the efficiency of EPE development cycles is reduced, and the reliability of design solutions depends heavily on costly full-scale tests.

4. Prospects for development

To overcome current limitations, research should focus on:

- Development of digital twins for EPEs, integrating plasma modeling, material testing data, and operational feedback [11, p. 6].

- Expansion of accelerated testing methods that simulate erosion and thermal loads in reduced timeframes.

- Application of machine learning and AI to optimize design and predict performance based on big experimental datasets [12, p. 94].

- Establishing unified standards for system-level validation to ensure interoperability between design, manufacturing, and testing facilities.

Conclusions

The conducted analysis confirms that existing systems for working out design and technological solutions of electric propulsion engines are essential but fragmented. Their current capabilities are not sufficient to guarantee rapid and cost-effective development of reliable EPEs. A promising direction is the creation of integrated systems that combine theoretical modeling, material science data, and experimental results into a unified framework. Such systems will significantly improve the accuracy of predictions, reduce development costs, and enhance the competitiveness of EPE technologies in the global space industry.

Bibliographic References

1. Hofer R. R. Electric propulsion for spacecraft: a review of current technologies // Journal of Propulsion and Power. – 2018. – Vol. 34, No. 6. – P. 14–29.

2. Goebel D., Katz I. Fundamentals of Electric Propulsion: Ion and Hall Thrusters. – Hoboken: Wiley, 2008. – 456 p.

3. Morozov A. I. The conceptual development of Hall thrusters // Plasma Physics Reports. – 2017. – Vol. 43. – P. 26–40.

4. Manzella D. M., Oleson S. R. Materials issues for ion and Hall thrusters // NASA Technical Reports. – 2015. – P. 110–125.

5. Boyd I. D. Modeling of plasma flow in electric propulsion devices // Physics of Plasmas. – 2016. – Vol. 23. – P. 42–56.

6. Boeuf J. P. Tutorial: Physics and modeling of Hall thrusters // Journal of Applied Physics. – 2017. – Vol. 121. – P. 75–91.

7. Komurasaki K. Plasma erosion testing of dielectric materials for Hall thrusters // Vacuum. – 2019. – Vol. 165. – P. 51–59.

8. Kim V. Hall thruster lifetime studies // IEEE Transactions on Plasma Science. – 2018. – Vol. 46. – P. 30–39.

9. Lev D., Shagam Y. Advanced manufacturing methods in electric propulsion development // Acta Astronautica. – 2020. – Vol. 177. – P. 15–21.

10. Crofton M. W. Lifetime assessment of electric propulsion engines // Progress in Aerospace Sciences. – 2016. – Vol. 83. – P. 200–215.

11. Hernández L., Sanz J. Digital twin applications in aerospace propulsion systems // Aerospace Science and Technology. – 2021. – Vol. 118. – P. 1–12.

12. Cai W., Li J. Artificial intelligence in aerospace propulsion research // Engineering Applications of Artificial Intelligence. – 2022. – Vol. 110. – P. 92–104.



Creative Commons Attribution Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License

допомогаЗнайшли помилку? Виділіть помилковий текст мишкою і натисніть Ctrl + Enter


 Інші наукові праці даної секції
МАШИННЕ НАВЧАННЯ У ТЕХНІЧНІЙ ДІАГНОСТИЦІ: СУЧАСНІ ПІДХОДИ ТА МОЖЛИВОСТІ
23.09.2025 06:31
SYNTHESIS OF THE CONTROL LAW FOR THE AIRCRAFT MOTION SIMULATION PLATFORM
22.09.2025 20:46
ДІАГНОСТИКА ЕМОЦІЙНОГО ВИГОРАННЯ ІЗ ЗАСТОСУВАННЯМ МЕТОДІВ МАШИННОГО ТА ГЛИБОКОГО НАВЧАННЯ
22.09.2025 18:24
ПІДВИЩЕННЯ ЕНЕРГОЕФЕКТИВНОСТІ ВІДЦЕНТРОВОГО НАСОСУ ШЛЯХОМ УДОСКОНАЛЕННЯ І ВЗАЄМОУЗГОДЖЕННЯ ЕЛЕМЕНТІВ ЙОГО ПРОТОЧНОЇ ЧАСТИНИ
22.09.2025 18:06
VIBRATION ANALYSIS OF COMPOSITES USING WAVELET FINITE ELEMENT METHOD
20.09.2025 10:44
STUDY OF DETECTION POSSIBILITY AND MEASUREMENT OF THE VOLUME OF SMALL LEAKS IN PIPELINES
19.09.2025 14:06
METHODOLOGY FOR SOLVING AXISYMMETRIC PROBLEMS OF UNSTEADY HEAT CONDUCTION
19.09.2025 11:51




© 2010-2025 Всі права застережені При використанні матеріалів сайту посилання на www.economy-confer.com.ua обов’язкове!
Час: 0.646 сек. / Mysql: 1833 (0.567 сек.)